Allegato XXXVII RADIAZIONI OTTICHE

Parte I

Radiazioni ottiche non coerenti

I valori limite di esposizione alle radiazioni ottiche, pertinenti dal punto di vista biofisico, possono essere determinati con le formule seguenti. Le formule da usare dipendono dal tipo della radiazione emessa dalla sorgente e i risultati devono essere comparati con i corrispondenti valori limite di esposizione indicati nella tabella 1.1. Per una determinata sorgente di radiazioni ottiche possono essere pertinenti più valori di esposizione e corrispondenti limiti di esposizione.

Le lettere da a) a o) si riferiscono alle corrispondenti righe della tabella 1.1.

a)
$$H_{\mathbf{d}} = \int_{0}^{t} \int_{\lambda = 100 \text{ ms}}^{\lambda = 400 \text{ ms}} (\lambda, t) \cdot S(\lambda) \cdot d\lambda \cdot dt$$

(H_{eff} è pertinente solo nell'intervallo da 180 a 400 nm)

b)
$$H_{UVA} = \int_{0}^{t} \int_{\lambda \in \mathcal{W}} \mathbb{E}_{\lambda}(\lambda, t) \cdot d\lambda \cdot dt$$

(H_{UVA} è pertinente solo nell'intervallo da 315 a 400 nm)

c), d)
$$L_n = \int\limits_{\lambda=100\,\mathrm{cm}}^{\lambda=700\,\mathrm{cm}} L_\lambda\left(\lambda\right) \cdot B(\lambda) \cdot d\lambda$$

(L_B è pertinente solo nell'intervallo da 300 a 700 nm)

e), f)
$$E_{B} = \int_{\lambda \in Morn}^{\lambda - 200 \, cm} E_{\lambda}(\lambda) \cdot B(\lambda) \cdot d\lambda$$

(Eg è pertinente solo nell'intervallo da 300 a 700 nm)

$$g(-1) \qquad \qquad L_{R} = \int\limits_{\lambda_{1}}^{\lambda_{2}} L_{\lambda}(\lambda) \cdot R(\lambda) \cdot d\lambda$$

(Cfr. tabella 1.1 per i valori appropriati di λ_t e λ_2)

m), n)
$$E_{1R} = \int_{\lambda=700\,\text{cm}}^{\lambda=1000\,\text{cm}} E_{\lambda}(\lambda) \cdot d\lambda$$

(E_{IR} è pertinente solo nell'intervallo da 780 a 3 000 nm)

o)
$$H_{din} = \int_{0}^{t} \int_{\lambda = 1000 \text{ cm}}^{\lambda = 1000 \text{ cm}} \int_{\lambda = 100 \text{ cm}}^{\lambda = 100 \text{ cm}} \cdot d\lambda \cdot dt$$

(H_{skin} è pertinente solo nell'intervallo da 380 a 3 000 nm)

Ai fini della direttiva, le formule di cui sopra possono essere sostituite dalle seguenti espressioni e dall'utilizzo dei valori discreti che figurano nelle tabelle successive:

a)
$$E_{df} = \sum_{\lambda=0}^{\lambda=400 \text{ cm}} E_{\lambda} \cdot S(\lambda) \cdot \Delta \lambda$$

$$e\ H_{eff}=E_{eff}\cdot\Delta t$$

b)
$$E_{tNA} = \sum_{k=100m}^{k=400m} E_k \cdot \Delta \lambda$$

$$e\ H_{UVA}=E_{UVA}\cdot \Delta t$$

c), d)
$$L_{B} \; = \; \sum_{\lambda = 100 \; cm}^{\lambda = 700 \; cm} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda$$

e), f)
$$E_{h} = \sum_{\lambda = 100 \text{ cm}}^{\lambda = 700 \text{ cm}} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda$$

$$g(-1) \hspace{1cm} L_{_{R}} = \hspace{1cm} \sum_{_{\lambda_{_{1}}}}^{\lambda_{_{2}}} \hspace{1cm} L_{_{\lambda}} \cdot R(\lambda) \cdot \Delta \lambda$$

(Cfr. tabella 1,1 per i valori appropriati di λ_1 e λ_2)

m), n)
$$E_{iR} = \sum_{\lambda=200 \text{ m}}^{\lambda=1000 \text{ m}} E_{\lambda} \cdot \Delta \lambda$$

o)
$$E_{din} = \sum_{k=100\,\mathrm{cm}}^{k=100\,\mathrm{cm}} E_k \cdot \Delta \lambda \qquad \qquad e \; H_{dein} = E_{dein} \cdot \Delta t$$

Note:

E_λ (λ, t), E_λ irradianza spettrale o densità di potenza spettrale: la potenza radiante incidente per unità di area su una superficie, espressa in watt su metro quadrato per nanometro [W m² nm²]; i valori di E_λ (λ, t) ed E_λ sono il risultato di misurazioni o possono essere forniti dal fabbricante delle attrezzature;

E_{eff} irradianza efficace (gamma UV): irradianza calcolata nell'intervallo di lunghezza d'onda UV da 180 a 400 nm, ponderata spettralmente con S (λ), espressa in watt su metro quadrato [W m⁻²];

H esposizione radiante: integrale nel tempo dell'irradianza, espressa in joule su metro quadrato [J m⁻²];

H_{eff} esposizione radiante efficace: esposizione radiante ponderata spettralmente con S (λ), espressa in joule su metro quadrato [J m⁻²];

E_{UWA} irradianza totale (UVA): irradianza calcolata nell'intervallo di lunghezza d'onda UVA da 315 a 400 nm, espressa in watt su metro quadrato [W mr²];

H_{UM} esposizione radiante: integrale o somma nel tempo e nella lunghezza d'onda dell'irradianza nell'intervallo di lunghezza d'onda UVA da 315 a 400 nm, espressa in joule su metro quadrato [J m⁻²];

S (A) fattore di peso spettrale: tiene conto della dipendenza dalla lunghezza d'onda degli effetti sulla salute delle radiazioni UV sull'occhio e sulla cute (tabella 1.2) [adimensionale];

t, Δt tempo, durata dell'esposizione, espressi in secondi [s];

λ knghezza d'onda, espressa in nanometri [nm];

Δλ larghezza di banda, espressa in nanometri [nm], degli intervalli di calcolo o di misurazione

I_λ (λ), I_λ radianza spettrale della sorgente, espressa in watt su metro quadrato per steradiante per nanometro [W m⁻² sr⁻¹ nm⁻¹];

R (A) fattore di peso spettrale: tiene conto della dipendenza dalla lunghezza d'onda delle lesioni termiche provocate sull'occhio dalle radiazioni visibili e IRA (tabella 1,3) [adimensionale];

In tradianza efficace (lesione termica): radianza calcolata ponderata spettralmente con R (λ), espressa in watt su metro quadrato per steradiante [W m⁻² sr ⁻¹];

B (A) ponderazione spettrale: tiene conto della dipendenza dalla lunghezza d'onda della lesione fotochimica provocata all'occhio dalla radiazione di luce blu (l'abella 1,3) [adimensionale];

In madianza efficace (luce blu): radian za calcolata ponderata spettralmente con B (λ), espressa in watt su metro quadrato per steradiante [W m⁻² sr ⁻¹];

E_B irradianza efficace (luce blu): irradianza calcolata ponderata spettralmente con B (λ) espressa in watt su metro quadrato [W m⁻²];

En irradianza totale (lesione termica): irradianza calcolata nell'intervallo di lunghezze d'onda dell'infrarosso da 780 nm a 3 000 nm, espressa in watt su metro quadrato [W nr²];

Estin irradianza totale (visibile, IRA e IRB): irradianza calcolata nell'intervallo di lunghezze d'onda visibile e dell'infrarosso da 380 nm a 3 000 nm, espressa in watt su metro quadrato [W m⁻²];

H_{skin} esposizione radiante: integrale o somma nel tempo e nella lunghezza d'onda dell'irradianza nell'intervallo di lunghezze d'onda visibile e dell'infrarosso da 380 nm a 3 000 nm, espressa in joule su metro quadrato () m³r

 angolo sotteso: angolo sotteso da una sorgente apparente, visto in un punto nello spazio, espresso in milliradianti (mrad). La sorgente apparente è l'oggetto reale o virtuale che forma l'immagine retinica più piccola possibile.

Tabella 1.1 Valori limiti di esposizione per radiazioni ottiche non coerenti

Indice	Lunghezz a d'onda nen	Valori limão di esposizione	Usak	Commenti	Parte del corpo	Rischio
d	180-400 (UVA, UVB e UVC)	H _e = 30 Valore giornalismo 8 ore	[] mr ²]		occhice cornea congiuntiva cristallino cute	for ocheratic congiuntivite cataretogenesi eritema dastosi tumore della cue
غد	315-400 (UVA)	H _{OM} = 10* Valore giornalismo 8 ore	[] m(₂]		ochic cristallino	cataratiogenesi
J	300-700 (Luce blu) Cfr nota 1	$I_0 = \frac{10^4}{t}$ per t s 10 000 s	$L_{e}[Wm^{-2}sr^{1}]$ t: [secondi]	pe.a > 13 mad		
ų.	300-700 (Lace blu) Cfr. nota 1	I ₀ = 100 per t > 10 000 s	[W m ⁻² sr ³]			
ų.	300-700 (Lace blu) Cfc. nota 1	$\bar{Y}_{2} = \frac{100}{t}$ per t s 10 000 s	E ₆ [W m²] t: [secondi]	per a < 11 mad Gr. nota 2	occinion regime	000000000000000000000000000000000000000
Ę	300-700 (Lace bla) Cft. nota 1	E ₀ = 0.01 t >10 000 s	[W m ⁻²]			

Indice	Lunghezza d'onda nan	Valori limite di esposizione	Unit à	Commenti	odaco pp sung	Nischio
ď	380-3 000	H _{das} = 20 000 t ⁰²⁵	H: [] m,j]		cnte	ustione
	(Visibile, IRA	per t < 10 s	t: [secondi]			
	e IRB)					

Untervallo di langhezze donda 200-700 mm copre in parte gli UVB, tutti gli UVA e la maggior parte delle radiazioni visibili; tuttavia il rischio associato è normalmente denominato rischio da duo e la namo stretto la lace blu riguarda solutro approssimativamente l'intervallo 400-490 nm. Nota I:

Per la fissazione costante di sosgenti piccolissime che sottendono angoli < 11 mmd, La può essere convertito in E_b. Ciò si applica di solito solo agli strumenti oftalmid o all'occhio sabilitzzato sotto anestesia Il «tempo di fissazione» massimo è dato dat_{ras} = 100/E_B dove E_b è espressa in W m². Considerati i movimenti dell'occhio durante compiti visivi normali, questo valore non supera i 100s. Nota 2:

 $\label{eq:continuous} \mbox{Tabella 1.2}$ S (λ) [adimensionale], da 180 nm a 400 nm

180	λ in nm	s (A)	λ in nm	s (A)	λ in nm	s (A)	λ in nm	s (A)	λ in nm	s (A)
181										
182										
183										
184										
185										0,000074
186										
187										0,000069
188										0.000066
189										0.000064
191										0,000062
191	190	0.0190	238	0.2744	286	0.7420	334	0.000355	382	0,000059
192										0,000057
193	192		240		288		336		384	0,000055
194										0,000053
195										0,000051
196	195									0,000049
197 0.0262 245 0.3600 293 0.5780 341 0.00271 389 0.00004 198 0.0274 246 0.3730 294 0.5587 342 0.00263 390 0.00004 199 0.0287 247 0.3865 295 0.5000 343 0.00255 391 0.00004 200 0.0300 248 0.4005 296 0.4984 344 0.00240 392 0.00004 201 0.0334 249 0.4150 297 0.4600 345 0.00240 393 0.00003 202 0.0371 250 0.4300 298 0.3989 346 0.00240 393 0.00003 203 0.0412 251 0.4665 299 0.3459 347 0.000231 394 0.00032 204 0.0459 255 0.4637 300 0.3000 348 0.000215 396 0.00003 205 0.05510 253 <td>196</td> <td></td> <td>244</td> <td></td> <td>292</td> <td></td> <td>340</td> <td></td> <td>388</td> <td>0,000047</td>	196		244		292		340		388	0,000047
198		.,								
199										
200 0,0300 248 0,4005 296 0,4984 344 0,000248 392 0,00048 201 0,0334 249 0,4150 297 0,4600 345 0,000240 393 0,00033 202 0,0371 250 0,4800 298 0,3989 346 0,000231 394 0,00033 203 0,0412 251 0,4665 299 0,3459 347 0,000223 395 0,00033 204 0,0459 252 0,4637 300 0,3000 348 0,000215 396 0,00033 205 0,0510 253 0,4815 301 0,2210 349 0,000207 397 0,00003 206 0,0551 254 0,5000 302 0,1629 350 0,000200 398 0,00033 207 0,0995 255 0,5200 303 0,1200 351 0,00191 399 0,00033 208 0,0643 256										0,000042
201 0,0334 249 0,4150 297 0,4600 345 0,000240 393 0,00033 202 0,0371 250 0,4300 298 0,3989 346 0,000231 394 0,000033 203 0,0412 251 0,4665 299 0,3459 347 0,000223 395 0,00033 204 0,0459 252 0,4637 300 0,3000 348 0,000215 396 0,00003 205 0,0510 253 0,4815 301 0,2210 349 0,000207 397 0,00033 206 0,0551 254 0,5000 302 0,1629 350 0,000200 398 0,00033 207 0,0595 255 0,5200 303 0,1200 351 0,00191 399 0,00033 208 0,0643 256 0,5437 304 0,0849 352 0,00183 400 0,00036 209 0,0694 257	200		248				344			
202 0,0371 250 0,4300 298 0,3989 346 0,00231 394 0,00033 203 0,0412 251 0,4465 299 0,3459 347 0,000223 395 0,00033 204 0,0459 252 0,4637 300 0,3000 348 0,000215 396 0,00033 205 0,0510 253 0,4815 301 0,2210 349 0,000207 397 0,00033 206 0,0551 254 0,5000 302 0,1629 350 0,000200 398 0,00003 207 0,0595 255 0,5200 303 0,1200 351 0,000191 399 0,00003 208 0,0643 256 0,5437 304 0,0849 352 0,000183 400 0,00033 209 0,0694 257 0,5685 305 0,0600 353 0,000157 210 0,0750 258 0,5945 306 0,										0.000039
203 0.0412 251 0.4465 299 0.3459 347 0.00223 395 0.000036 204 0.0459 252 0.4637 300 0.3000 348 0.00215 396 0.000035 205 0.0510 253 0.4815 301 0.2210 349 0.00207 397 0.000035 206 0.0551 254 0.5000 302 0.1629 350 0.00220 398 0.00003 207 0.0595 255 0.5200 303 0.1200 351 0.000191 399 0.00003 208 0.0643 256 0.5437 304 0.0849 352 0.000183 400 0.00003 209 0.0694 257 0.5685 305 0.0600 353 0.000175 210 0.0750 258 0.5945 306 0.0454 354 0.000167 211 0.0786 259 0.6216 307 0.0344 355 </td <td></td> <td>.,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		.,								
204 0,0459 252 0,4637 300 0,3000 348 0,00215 396 0,00003 205 0,0510 253 0,4815 301 0,2210 349 0,00207 397 0,00003 206 0,0551 254 0,5000 302 0,1629 350 0,00200 398 0,00003 207 0,0595 255 0,5200 303 0,1200 351 0,00191 399 0,00003 208 0,0643 256 0,5487 304 0,0849 352 0,00183 400 0,00003 209 0,0694 257 0,5685 305 0,0600 353 0,00175 210 0,0750 258 0,5945 306 0,0454 354 0,000167 211 0,0786 259 0,6216 307 0,0344 355 0,000160 212 0,0824 260 0,6500 308 0,0260 356 0,000153 221 214 0,0946										0,000036
205 0,0510 253 0,4815 301 0,2210 349 0,000207 397 0,00003 206 0,0551 254 0,5000 302 0,1629 350 0,000200 398 0,00033 207 0,0595 255 0,5200 303 0,1200 351 0,000191 399 0,00003 208 0,0643 256 0,5437 304 0,0849 352 0,000183 400 0,0003 209 0,0694 257 0,5685 305 0,0600 353 0,000175 210 0,0750 258 0,5945 306 0,0454 354 0,000167 211 0,0766 259 0,6216 307 0,0344 355 0,000160 212 0,0824 260 0,6500 308 0,0260 356 0,000160 212 0,0824 260 0,6590 308 0,0260 356 0,000147 214 0,0966 262 0,798 310 0,0150	204			0.4637	300		348		396	
206 0,0551 254 0,5000 302 0,1629 350 0,000200 398 0,000303 207 0,0595 255 0,5200 303 0,1200 351 0,000191 399 0,000033 208 0,0643 256 0,5437 304 0,0849 352 0,000183 400 0,000036 209 0,0694 257 0,5685 305 0,0600 353 0,000175 210 0,0750 258 0,5945 306 0,0454 354 0,000167 211 0,0786 259 0,6216 307 0,0344 355 0,000160 212 0,0824 260 0,6500 308 0,0260 356 0,000153 213 0,0864 261 0,6792 309 0,0197 357 <t>0,000147 214 0,0906 262 0,7098 310 0,0150 358 0,000140 215 0,0950 263 0,7417<!--</td--><td>205</td><td>0.0510</td><td>253</td><td>0.4815</td><td>301</td><td>0.2210</td><td>349</td><td></td><td>397</td><td>0,000033</td></t>	205	0.0510	253	0.4815	301	0.2210	349		397	0,000033
207 0,0595 255 0,5200 303 0,1200 351 0,000191 399 0,00033 208 0,0643 256 0,5437 304 0,0849 352 0,000183 400 0,000036 209 0,0694 257 0,5685 305 0,0600 353 0,000175 210 0,0750 258 0,5945 306 0,0454 354 0,000167 211 0,0786 259 0,6216 307 0,0344 355 0,000160 212 0,0824 260 0,6500 308 0,0260 356 0,000153 213 0,0864 261 0,6792 309 0,0197 357 0,000147 214 0,0966 262 0,7098 310 0,0150 358 0,000141 215 0,0950 263 0,7417 311 0,0111 359 0,000136 216 0,0995 264 0,7751 312 0,081	206				302		350		398	0,000032
209 0,0694 257 0,5685 305 0,0600 353 0,000175 210 0,0750 258 0,5945 306 0,0454 354 0,000167 211 0,0786 259 0,6216 307 0,0344 355 0,000160 212 0,0824 260 0,6500 308 0,0260 356 0,000153 213 0,0864 261 0,6792 309 0,0197 357 0,000147 214 0,0906 262 0,7098 310 0,0150 358 0,000141 215 0,0950 263 0,7417 311 0,0111 359 0,000136 216 0,0995 264 0,7551 312 0,0081 360 0,000130 217 0,1043 265 0,8100 313 0,0060 361 0,000126 218 0,1093 266 0,8449 314 0,0042 362 0,000122 219	207	0.0595	255		303		351		399	0,000031
210 0,0750 258 0,5945 306 0,0454 354 0,000167 211 0,0786 259 0,6216 307 0,0344 355 0,000160 212 0,0824 260 0,6500 308 0,0260 356 0,000153 213 0,0864 261 0,6792 309 0,0197 357 0,000147 214 0,0906 262 0,7098 310 0,0150 358 0,000141 215 0,0950 263 0,7417 311 0,0111 359 0,000136 216 0,0995 264 0,7751 312 0,0081 360 0,000130 217 0,1043 265 0,8100 313 0,060 361 0,000126 218 0,1093 266 0,8449 314 0,042 362 0,000122 219 0,1145 267 0,8812 315 0,030 363 0,000118 220	208	0,0643			304		352			0,000030
211 0.0786 259 0.6216 307 0.0344 355 0.000160 212 0.0824 260 0.6500 308 0.0260 356 0.000153 213 0.0864 261 0.6792 309 0.0197 357 0.000147 214 0.0906 262 0.7098 310 0.0150 358 0.000141 215 0.0950 263 0.7417 311 0.0111 359 0.000136 216 0.0995 264 0.7751 312 0.0081 360 0.000130 217 0.1043 265 0.8100 313 0.0060 361 0.000126 218 0.1093 266 0.8449 314 0.0042 362 0.000122 219 0.1145 267 0.8812 315 0.0030 363 0.000118 220 0.1200 268 0.9192 316 0.0024 364 0.000114 221	209	0,0694	257	0,5685	305	0,0600	353	0,000175		
212 0,0824 260 0,6500 308 0,0260 356 0,000153 213 0,0864 261 0,6792 309 0,0197 357 0,000147 214 0,0906 262 0,7098 310 0,0150 358 0,000141 215 0,0950 263 0,7417 311 0,0111 359 0,000136 216 0,0995 264 0,7751 312 0,0081 360 0,000130 217 0,1043 265 0,8100 313 0,0600 361 0,000126 218 0,1093 266 0,8449 314 0,0042 362 0,000122 219 0,1145 267 0,8812 315 0,0030 363 0,000118 220 0,1200 268 0,9192 316 0,0024 364 0,000114 221 0,1257 269 0,9587 317 0,002 365 0,000106 223	210	0,0750	258	0,5945	306	0,0454	354	0,000167		
213 0,0864 261 0,6792 309 0,0197 357 0,000147 214 0,0906 262 0,7098 310 0,0150 358 0,000141 215 0,0950 263 0,7417 311 0,0111 359 0,000136 216 0,0995 264 0,7751 312 0,0081 360 0,000130 217 0,1043 265 0,8100 313 0,0060 361 0,000126 218 0,1093 266 0,8449 314 0,0042 362 0,000122 219 0,1145 267 0,8812 315 0,0030 363 0,000118 220 0,1200 268 0,9192 316 0,0024 364 0,000114 221 0,1257 269 0,9587 317 0,0020 365 0,000110 222 0,1316 270 1,0000 318 0,0016 366 0,000103 223	211	0,0786	259	0,6216	307	0,0344	35.5	0,000160		
213 0,0864 261 0,6792 309 0,0197 357 0,000147 214 0,0906 262 0,7098 310 0,0150 358 0,000141 215 0,0950 263 0,7417 311 0,0111 359 0,000136 216 0,0995 264 0,7751 312 0,0081 360 0,000130 217 0,1043 265 0,8100 313 0,0060 361 0,000126 218 0,1093 266 0,8449 314 0,0042 362 0,000122 219 0,1145 267 0,8812 315 0,0030 363 0,000118 220 0,1200 268 0,9192 316 0,0024 364 0,000114 221 0,1257 269 0,9587 317 0,0020 365 0,000110 222 0,1316 270 1,0000 318 0,0016 366 0,000103 223	212	0.0824	260	0,6500	308	0,0260	356	0,000153		
215 0,0950 263 0,7417 311 0,0111 359 0,000136 216 0,0995 264 0,7751 312 0,0081 360 0,000130 217 0,1043 265 0,8100 313 0,0060 361 0,000126 218 0,1093 266 0,8449 314 0,0042 362 0,000122 219 0,1145 267 0,8812 315 0,0030 363 0,000118 220 0,1200 268 0,9192 316 0,0024 364 0,000114 221 0,1257 269 0,9587 317 0,0020 365 0,000110 222 0,1316 270 1,0000 318 0,0016 366 0,000106 223 0,1378 271 0,9919 319 0,0012 367 0,000103 224 0,1444 272 0,9838 320 0,0010 368 0,000099 225	213	0,0864	261	0,6792	309	0,0197	357	0,000147		
216 0,0995 264 0,7751 312 0,0081 360 0,000130 217 0,1043 265 0,8100 313 0,0060 361 0,000126 218 0,1093 266 0,8449 314 0,0042 362 0,000122 219 0,1145 267 0,8812 315 0,0030 363 0,000118 220 0,1200 268 0,9192 316 0,0024 364 0,000114 221 0,1257 269 0,9587 317 0,0020 365 0,000110 222 0,1316 270 1,0000 318 0,0016 366 0,000106 223 0,1378 271 0,9919 319 0,0012 367 0,000103 224 0,1444 272 0,9838 320 0,0010 368 0,000099 225 0,1500 273 0,9758 321 0,00819 369 0,000096 226	214	0,0906	262	0,7098	310	0,0150	358	0,000141		
217 0,1043 265 0,8100 313 0,0060 361 0,000126 218 0,1093 266 0,8449 314 0,0042 362 0,000122 219 0,1145 267 0,8812 315 0,0030 363 0,000118 220 0,1200 268 0,9192 316 0,0024 364 0,000114 221 0,1257 269 0,9587 317 0,0020 365 0,000110 222 0,1316 270 1,0000 318 0,0016 366 0,000106 223 0,1378 271 0,9919 319 0,0012 367 0,000103 224 0,1444 272 0,9838 320 0,0010 368 0,000099 225 0,1500 273 0,9758 321 0,000819 369 0,000096 226 0,1583 274 0,9679 322 0,000670 370 0,000093	215	0,0950	263	0,7417	311	0,0111	359	0,000136		
218 0,1093 266 0,8449 314 0,0042 362 0,000122 219 0,1145 267 0,8812 315 0,0030 363 0,000118 220 0,1200 268 0,9192 316 0,0024 364 0,000114 221 0,1257 269 0,9587 317 0,0020 365 0,000110 222 0,1316 270 1,0000 318 0,0016 366 0,000106 223 0,1378 271 0,9919 319 0,0012 367 0,000103 224 0,1444 272 0,9838 320 0,0010 368 0,000099 225 0,1500 273 0,9758 321 0,000819 369 0,000096 226 0,1583 274 0,9679 322 0,000670 370 0,000093	216	0,0995	264	0,7751	312	0,0081	360	0,000130		
219 0,1145 267 0,8812 315 0,0030 363 0,000118 220 0,1200 268 0,9192 316 0,0024 364 0,000114 221 0,1257 269 0,9587 317 0,0020 365 0,000110 222 0,1316 270 1,0000 318 0,0016 366 0,000106 223 0,1378 271 0,9919 319 0,0012 367 0,000103 224 0,1444 272 0,9838 320 0,0010 368 0,000099 225 0,1500 273 0,9758 321 0,00819 369 0,000096 226 0,1583 274 0,9679 322 0,00670 370 0,000093	217	0,1043	265	0,8100	313	0,0060	361	0,000126		
220 0,1200 268 0,9192 316 0,0024 364 0,000114 221 0,1257 269 0,9587 317 0,0020 365 0,000110 222 0,1316 270 1,0000 318 0,0016 366 0,000106 223 0,1378 271 0,9919 319 0,0012 367 0,000103 224 0,1444 272 0,9838 320 0,0010 368 0,000099 225 0,1500 273 0,9758 321 0,000819 369 0,000096 226 0,1583 274 0,9679 322 0,000670 370 0,000093			266		314	0,0042	362			
221 0,1257 269 0,9587 317 0,0020 365 0,000110 222 0,1316 270 1,0000 318 0,0016 366 0,000106 223 0,1378 271 0,9919 319 0,0012 367 0,000103 224 0,1444 272 0,9838 320 0,0010 368 0,000099 225 0,1500 273 0,9758 321 0,000819 369 0,000096 226 0,1583 274 0,9679 322 0,000670 370 0,000093	219	0,1145	267	0,8812	315	0,0030	363	0,000118		
222 0,1316 270 1,0000 318 0,0016 366 0,000106 223 0,1378 271 0,9919 319 0,0012 367 0,000103 224 0,1444 272 0,9838 320 0,0010 368 0,000099 225 0,1500 273 0,9758 321 0,000819 369 0,000096 226 0,1583 274 0,9679 322 0,000670 370 0,000093	220	0,1200	268	0,9192	316	0,0024	364	0,000114		
222 0,1316 270 1,0000 318 0,0016 366 0,000106 223 0,1378 271 0,9919 319 0,0012 367 0,000103 224 0,1444 272 0,9838 320 0,0010 368 0,000099 225 0,1500 273 0,9758 321 0,000819 369 0,000096 226 0,1583 274 0,9679 322 0,000670 370 0,000093	221	0,1257	269	0,9587	317	0,0020	36.5	0,000110		
223 0,1378 271 0,9919 319 0,0012 367 0,000103 224 0,1444 272 0,9838 320 0,0010 368 0,000099 225 0,1500 273 0,9758 321 0,000819 369 0,000096 226 0,1583 274 0,9679 322 0,000670 370 0,000093						0,0016	366	0,000106		
225 0,1500 273 0,9758 321 0,000819 369 0,000096 226 0,1583 274 0,9679 322 0,000670 370 0,000093										
226 0,1583 274 0,9679 322 0,000670 370 0,000093	224	0,1444	272	0,9838	320	0,0010	368	0,000099		
226 0,1583 274 0,9679 322 0,000670 370 0,000093	225	0,1500	273	0,9758	321	0,000819	369	0,000096		
227 0,1658 275 0,9600 323 0,000540 371 0,000090	226	0,1583	274	0,9679	322	0,000670	370	0,000093		
	227	0,1658	275	0,9600	323	0,000540	371	0,000090		

Tábella I.3 B (A), R (A) [adimensionale], da 380 nm a 1 400 nm

λ in nm	В (A)	R (A)
300 ≤λ< 380	0,01	_
380	0,01	0,1
385	0,013	0,13
390	0,025	0,25
395	0,05	0,5
400	0,1	1
405	0,2	2
410	0,4	4
415	0,8	s
420	0,9	9
425	0,95	9,5
430	0,98	9,8
435	1	10
440	1	10
445	0,97	9,7
450	0,94	9,4
455	0,9	9
460	0,8	8
465	0,7	7
470	0,62	6,2
475	0,55	5,5
480	0,45	4,5
485	0,32	3,2
490	0,22	2,2
495	0,16	1,6
500	0,1	1
500 <λ≤ 600	10 _{0'05} (4205)	1
600 <λ≤ 700	0,001	1
700 <λ≤ 1 0 50	_	100002(πο- ^λ)
1 050 <λ≤ 1 150	_	0,2
1 150 <λ≤ 1 200	_	0,2-10 ^{0,02(1150-3)}
1 200 <λ≤ 1 400	_	0,02

Allegato XXXVII - Parte II

Radiazioni laser

I valori di esposizione alle radiazioni ottiche, pertinenti dal punto di vista biofisico, possono essere determinati con le formule seguenti. La formula da usare dipende dalla lunghezza d'onda e dalla durata delle radiazioni emesse dalla sorgente e i risultati devono essere comparati con i corrispondenti valori limite di esposizione di cui alle tabelle da 2.2 a 2.4. Per una determinata sorgente di radiazione laser possono essere pertinenti più valori di esposizione e corrispondenti limiti di esposizione.

I coefficienti usati come fattori di calcolo nelle tabelle da 2.2 a 2.4 sono riportati nella tabella 2.5 e i fattori di correzione per l'esposizione ripetuta nella tabella 2.6.

$$E = \frac{dP}{dA} [W m^{-2}]$$

$$H = \int_{0}^{t} E(t) \cdot dt [J m^{-2}]$$

Note:

dP potenza, espressa in watt [W];

dA superficie, espressa in metri quadrati [m²];

E(t), E irradianza o densità di potenza: la potenza radiante incidente per unità di area su una superficie generalmente espressa in watt su metro quadrato [W m⁻²]. I valori E(t) ed E sono il risultato di misurazioni o possono essere indicati dal fabbricante delle attrezzature;

H esposizione radiante: integrale nel tempo dell'irradianza, espressa in joule su metro quadrato [J m⁻²];

t tempo, durata dell'esposizione, espressa in secondi [s];

λ lunghezza d'onda, espressa in nanometri [nm];

q angolo del cono che limita il campo di vista per la misurazione, espresso in milliradianti [mrad];

Ym campo di vista per la misurazione, espresso in milliradianti [mrad];

angolo sotteso da una sorgente, espresso in milliradianti [mrad];

apertura limite: superficie circolare su cui si basa la media dell'irradianza e dell'esposizione radiante;

G radianza integrata: integrale della radianza su un determinato tempo di esposizione, espresso come energia radiante per unità di area di una superficie radiante per unità dell'angolo solido di emissione, espressa in joule su metro quadrato per steradiante [J m⁻² sr⁻¹].

Tabella 2.1 Rischi delle radiazioni

Lunghezza d'onda [nm] λ	Campo di radiazione	Organo interes- sato	Rischio	Tabella dei valori limite di esposizione
da 180 a 400	UV	occhio	danno fotochimico e danno termico	2.2, 2.3
da 180 a 400	UV	cute	eritema	2.4
da 400 a 700	visibile	occhio	danno alla retina	2.2
da 400 a 600	visibile	occhio	danno fotochimico	2.3
da 400 a 700	visibile	cute	danno termico	2.4
da 700 a 1 400	IRA	occhio	danno termico	2.2, 2.3
da 700 a 1 400	IRA	cute	danno termico	2.4
da 1 400 a 2 600	IRB	occhio	danno termico	2.2
da 2 600 a 106	IRC	occhio	danno termico	2.2
da 1 400 a 106	IRB, IRC	occhio	danno termico	2.3
da 1 400 a 106	IRB, IRC	cute	danno termico	2.4

Tabella 2.2

Valori limite di esposizione dell'occhio a radiazioni laser — Durata di esposizione breve < 10 s

Durata [s]	$\frac{2}{4} \qquad 10^{13} - 10^{11} \qquad 10^{21} - 10^{2} \qquad 10^{29} - 10^{2} \qquad 10^{29} - 1,8 + 10^{23} \qquad 1,8 + 10^{25} - 5 + 10^{23} \qquad 5 + 10^{25} - 10^{23} \qquad 10^{25} - 10^{23} \qquad 10^{25} - 10^{25} 10^{25} - 10^{25$	H=3011m ⁻² 1		H = $40 \text{J} \text{m}^{-2}$ sct < $2.6 \cdot 10^3 \text{allora H} = 5.6 \cdot 10^3 \text{t}^{0.43} \text{J} \text{m}^{-2}$ cf. nota $^{\circ}$	H = 60 J m^{-3} set < 1,3 · 10° allora H = 5.6 · 10³ L ^{0.3} J cfr. nota ^d	$[H = 1000 \text{ J}] \text{ set } < 1,0 \cdot 10^{7} \text{ allora } H = 5,6 \cdot 10^{3} \text{ t}^{0.35} \text{ J} \text{ m}^{-3} \text{ cfr. nota}^{\text{d}}$	$[H = 160 \ J \ m^2]$ set $< 6.7 \cdot 10^2 \ allon \ H = 5.6 \cdot 10^3 \ l^{0.13} \ J \ m^2] \ cfr. nota^d$	$H = 250 \text{ J m}^{-2} \text{ se } t < 4.0 \cdot 10^{-6} \text{ allora H} = 5.6 \cdot 10^{3} \text{ tm. nota}^{-2} \text{ fm. nota}^{-3}$			$H = 10^3 [\text{Jm}^2]$ set $< 1.0 \cdot 10^3 \text{ allora H} = 5.6 \cdot 10^3 \text{ t}^{0.35} [\text{Jm}^3] \text{ cfr. nota}^4$	$ \begin{array}{c} \frac{V}{M} \\ \text{H} = 1,6 \cdot 10^3 \ \text{Im}^{-3} \\ \text{J} \end{array} \qquad \text{set} < 6.7 \cdot 10^{-3} \text{allora} \ \text{H} = 5,6 \cdot 10^3 \text{lm}^{-3} \\ \text{J cfr. nota} \\ \text{J} \end{array} $	$H = 2.5 \cdot 10^3 \ [\text{Jm}^{-2}]$ set < $4.0 \cdot 10^{-2}$ allora $H = 5.6 \cdot 10^3 \ [\text{Lm}^{-2}]$ cfr. nota ^d	$[H = 4,0 \cdot 10^3 \ [m^{-3}] \qquad \text{set} < 2,6 \cdot 10^3 \ [n^{-3}] \ \text{cf.}, \text{ nota}^3$	$ = \frac{[H = 6,3 \cdot 10^3 \ [I \ m^{-3}]]}{[H = 6,3 \cdot 10^3 \ [I \ m^{-3}]]} $ set < 1,6 \cdot 10^0 allora H = 5,6 \cdot 10^1 \ [I \ m^{-3}] cfr. nota description of the content of the conte	$H = 5.6 \cdot 10^3 t^{0.25} \text{Jm}^{-2} \text{J}$	H = 1,5 · 10 ⁻⁴ C _E [J m ⁻²]	$ = \frac{1}{8} \left[H = 1.5 \cdot 10^4 C_A C_L [\mu m^2] \right] H = 2.7 \cdot 10^4 t^{0.7} C_A C_L [\mu m^2] \qquad H = 5 \cdot 10^3 C_A C_L [\mu m^2] $	H = 1,5 · 10 ⁻³ C _c C _E [J m ⁻²]	$E = 10^{12} [W m^{-3}]$ Cfr. nota $^{\circ}$ H = $10^{5} [J m^{-2}]$ H = $5.6 \cdot 10^{12} (J m^{-2}]$ H = $5.6 \cdot 10^{12} (J m^{-2})$	$E = 10^{13} [W m^{-2}]$ Cfr. nota $^{\circ}$ H = $10^{4} [J m^{-2}]$	$E = 10^{12} [W m^2]$ Cfr. nota $H = 10^3 [J m^2]$ $H = 5.6 \cdot 10^3 \cdot 10^{0.15} [J m^2]$	$E = 10^{11} [\text{W m}^{-2}] \qquad \text{Cfr. nota}^{\circ} \qquad H = 100 [\text{J m}^{-2}] \qquad H = 5.6 \cdot 10^{3} \cdot 1^{0.25} [\text{J m}^{-2}]$
			5.0	M.	1.6	60.1	ad			T 'c	c'n	×11	ad i		1			_	_	$E = 10^{12} [V]$			
ETHITS	dy	Н	s 0	1>	1>{	,0 T	od s	ZE'01	٠٤.	I :8	€,0	>1.1	ad t	utu	I		U	uu			el el	ou :	ήЭ
Lunghezza d'onda * [nm]		180 - 280	280-302	303	304	305	306	307	308	309	310	311	312	313	314	315-400	400-700	700-1050	1050-1400	1 400 - 1 500	1 500 - 1 800	1800-2600	2 600 - 10 6
Lungh	0	UVC							UVB							UVA	1. 4.4	VISIDILE o TD A	CNID		IRB	٥	IRC

е с о т

Tabella 2.3

Valori limite di esposizione dell'occhio a radiazioni laser — Durata di esposizione lunga ≥ 10 s

						1
	Lunghezza d'onda" [nm]	еште	5	Durata [s]		
	6	∂dγ	101-102	102-104	10*-3·10*	
UVC	180-280			u = 20 ft == 21		
	280 - 302			H = 30 J m J		
	303			$H = 40 \text{ (J) m}^{-2}$		
	304			H = 60 [J m ⁻²]		
	305	_		H = 100 [J m ⁻²]		
	306			H = 160 [j m ⁻²]		
	307	u		H = 250 [J m ⁻²]		
CVB	308	nu ;		$H = 400 [l m^{-2}]$		
	309	3,5		H = 630 [J m ⁻²]		
	310	_		H = 1,0·10 ³ [J m ⁻²]		
	311			$H = 1,6 \cdot 10^3 [J m^{-2}]$		
	312			$H = 2.5 \cdot 10^3 [] \text{ m}^{-2}]$		_
	313			$H = 4,0 \cdot 10^3 [] \text{ m}^{-2}]$		
	314			$H = 6, 3 \cdot 10^3 [] \text{ m}^{-2}]$		
UVA	315-400			$H = 10^{-} [J \text{ m}^{-2}]$		_
əlile - 700	400 - 600 Danno fotochimico ^b Danno alla retina	ttit	$H = 100 C_B \iint m^{-2} $ $ (\gamma = 11 \text{ mrad})^d $	$E=1~C_{\rm B}\left[{\rm W~m^{-3}}\right];\left(\gamma=1,1~t^{0.5}~m{\rm rad}\right)^{d}$	$E = 1 G_B [W m^{-2}]$ $(y = 110 \text{ mrad})^d$	
I εΙV - 004	400 - 700 Danno termico ⁵ Danno alla retina	uΖ	$se \alpha < 1.5 \text{ mrad}$ $se \alpha > 1.5 \text{ mrad e t} \le T_2$ $se \alpha > 1.5 \text{ mrad e t} > T_2$	rrad allora $E = 10 [W m^{-2}]$ allora $H = 18 C_E t^{4G/5} [J m^{-2}]$ rrad $e t > T_2$ allora $E = 18 C_E T_2^{-44.5} [W m^{-2}]$		
IRA	700 - 1 400	mm 7	$se \alpha < 1.5 \text{ mrad}$ $se \alpha > 1.5 \text{ mrad et s } T_2$ $se \alpha > 1.5 \text{ mrad et > } T_2$	$\begin{array}{ll} \text{allora } E = 10C_AC_C[Wm^2] \\ \text{allora } H = 18C_AC_CC_E\ell^{0.5}[Jm^2] \\ \text{rad } et>T_2 \\ \text{allora } E = 18C_AC_CC_ET_2^{0.5}[Wm^2] (\text{non superare } 1000Wm^2) \\ \end{array}$		
IRB e IRC	1 400 - 106	².nbɔ		$E = 1.000 [W m^{-2}]$		
						J

Se la lunghezza d'orda o un'altra caratteristica del laser è coperto da due limiti, si applica il più restrittivo.

Per sorgenti piccole che sottendono un angolo di 1,5 mrado inferiore, i doppi valori limit nel visbile da 400 mna 600 mn si riducono ai limiti per rischi foncelimiti per rischi fonce sesere espresso come radiata antiegrata nel tempo G = 10°C_{st} [m² str²] pert > 105 fino at = 100 C_{st} [W m² str²] pert > 100 fino at = 100 C_{st} [W m² str²] pert > 100 fino at = 100 C_{st} [W m² str²] pert > 100 fino at = 100 fino at = 100 C_{st} [W m² str²] pert > 100 fino at = 100 fi

Per lunghezze d'onda 1 400 - 103 mm; apertura diametro = 3,5 mm; per lunghezze d'onda 103 - 106 mm; apertura diametro = 11 mm.

Per la misurazione del valore di esposizione y è cosi definita: se a (angolo sotteso da una sorgente) > y (angolo del cono di limitazione, indicato tra parentesi nella colonna corrispondente) altora il campo di vista di misurazione di y, dovrebbe essere il Se a < y Il valore del campo di vista di misurazione v_{in} deve essere sufficientemente grande da includere completamente la sorgente, altrimenti non è limitato e può essere superiore a y. valore dato di y (se si utilizza un valore superiore del campo di vista il rischio risulta sovrastimato).

Tabella 2.4

Valori limite di esposizione della cute a radiazioni laser

Durata [s]	10°-10° 10°-10° 10°-10° 10°-10° 10°-3·10°	Come i limiti di esposizione per l'occhio	* 100 mm m m m m m m m m m m m m m m m m	[$[m^{-1}]$] H = 1,1 · 10° CA t $^{0.5}$ [$[m^{-1}]$] E = 2 · 10° CA [W m ⁻¹]		Change of the second of the second of the second of	COTTE I IIIIIII di esposizione per i occino	
	< 10-9	$E = 3 \cdot 10^{10} [Wm^{-2}]$	$E = 2 \cdot 10^{11} [Wm^{-2}]$	$E = 2 \cdot 10^{11} \text{ CA } [\text{W·m}^{-2}]$	$E = 10^{12} [Wm^{-2}]$	$E = 10^{13} [Wm]^2$	$E = 10^{12} [Wm^{-2}]$	$E = 10^{11} [Wm^{-2}]$
situra	dV	mm²,٤	tut	nč,š				
Lunghezza d'onda ^a [nm]		180 - 400	400 - 700	700 - 1 400	1 400 - 1 500	1 500-1 800	1 800 - 2 600	2 600 - 106
Lungh		UV (A, B, C)	Visibile	e IRA		IRB	IRC	

Se la lunghezza d'onda o un'altra condizione del laser è coperta da due limiti, si applica il più restritivo.

Tabella 2.5

Fattori di correzione applicati e altri parametri di calcolo

Parametri elencati da ICNIRP	Regione spettrale valida (nm)	Valore o descrizione
	λ < 700	C _A = 1,0
C _A	700 — 1 050	C _A = 10 0,002 (A - 700)
	1 050 — 1 400	$C_A = 5.0$
C	400 — 450	$C_B = 1.0$
C _B	450 — 700	$C_B = 10^{-0.02(\lambda - 450)}$
	700 — 1 150	C _C = 1,0
C _C	1 150 — 1 200	C _C = 10 0,018 (A - 1 150)
	1 200 — 1 400	C _C = 8,0
	λ < 450	T ₁ = 10 s
Т1	450 — 500	$T_1 = 10 \cdot [10^{-0.02 (\lambda - 450)}] \text{ s}$
	λ > 500	T ₁ = 100 s
Parametri elencati da ICNIRP	Valido per effetto biologico	Valore o descrizione
a_{\min}	tutti gli effetti termici	$a_{min} = 1,5 \text{ mrad}$
Parametri elencati da ICNIRP	Intervallo angolare valido (mrad)	Valore o descrizione
	$\alpha < \alpha_{min}$	$C_E = 1.0$
C_{E}	$\alpha_{min} < \alpha < 100$	$C_E = \alpha/\alpha_{min}$
	a > 100	$C_E = \alpha^2/(\alpha_{min} \cdot \alpha_{max}) \text{ mrad con } \alpha_{max} = 100 \text{ mrad}$
	α < 1,5	T ₂ = 10 s
T ₂	1,5 < α < 100	$T_2 = 10 \cdot [10^{-(\alpha - 1,5)/98,5}] \text{ s}$
	a > 100	T ₂ = 100 s

Parametri elencati da ICNIRP	Intervallo temporale valido per l'esposizione (s)	Valore o descrizione
	t ≤ 100	γ = 11 [mrad]
γ	100 < t < 10 ⁴	γ = 1,1 t ^{0,5} [mrad]
	t > 10 ⁴	γ = 110 [mrad]

Tabella 2.6

Correzione per esposizioni ripetute

Per tutte le esposizioni ripetute, derivanti da sistemi laser a impulsi ripetitivi o a scansione, dovrebbero essere applicate le tre norme generali seguenti:

- L'esposizione derivante da un singolo impulso di un treno di impulsi non supera il valore limite di esposizione per un singolo impulso della durata di quell'impulso.
- L'esposizione derivante da qualsiasi gruppo di impulsi (o sottogruppi di un treno di impulsi) che si verseica in un tempo t non supera il valore limite di esposizione per il tempo t.
- 3. L'esposizione derivante da un singolo impulso in un gruppo di impulsi non supera il valore limite di esposizione del singolo impulso moltiplicato per un fattore di correzione termica cumulativa C_p=N^{-0,25}, dove N è il numero di impulsi. Questa norma si applica soltanto a limiti di esposizione per la protezione da lesione termica, laddove tutti gli impulsi che si verseicano in meno di T_{min} sono trattati come singoli impulsi.

Parametri	Regione spettrale valida (nm)	Valore o descrizione
	315 <λ≤ 400	Tmin = 10 -9 s (= 1 ns)
	400 <λ≤ 1 050	T _{min} = 18· 10 ⁻⁶ s (= 18 μs)
	1 050 <λ≤ 1 400	T _{min} = 50· 10 ⁻⁶ s (= 50 μs)
T_{min}	1 400 <λ≤ 1 500	T _{min} = 10 ⁻³ s (= 1 ms)
	1 500 <λ≤ 1 800	$T_{min} = 10 \text{ s}$
	1 800 <λ≤ 2 600	T _{min} = 10 ⁻³ s (= 1 ms)
	2 600 <λ≤ 10 6	T _{min} = 10 -7 s (= 100 ns)